Exogenous Serpin B1 Restricts Immune Complex-Mediated NET Formation Via Inhibition of a Chymotrypsin-Like Protease and Enhances Microbial Phagocytosis
JOURNAL OF BIOLOGICAL CHEMISTRY(2024)
Univ Washington
Abstract
Immune complex (IC)-driven formation of neutrophil extracellular traps (NETs) is a major contributing factor to the pathogenesis of autoimmune diseases including systemic lupus erythematosus (SLE). Exogenous recombinant human serpin B1 (rhsB1) can regulate NET formation; however, its mechanism(s) of action is currently unknown as is its ability to regulate IC-mediated NET formation and other neutrophil effector functions. To investigate this, we engineered or post-translationally modified rhsB1 proteins that possessed specific neutrophil protease inhibitory activities and pretreated isolated neutrophils with them prior to inducing NET formation with ICs derived from patients with SLE, PMA, or the calcium ionophore A23187. Neutrophil activation and phagocytosis assays were also performed with rhsB1 pretreated and IC-activated neutrophils. rhsB1 dose-dependently inhibited NET formation by all three agents in a process dependent on its chymotrypsin-like inhibitory activity, most likely cathepsin G. Only one variant (rhsB1 C344A) increased surface levels of neutrophil adhesion/activation markers on IC-activated neutrophils and boosted intracellular ROS production. Further, rhsB1 enhanced complement-mediated neutrophil phagocytosis of opsonized bacteria but not ICs. In conclusion, we have identified a novel mechanism of action by which exogenously administered rhsB1 inhibits IC, PMA, and A2138-mediated NET formation. Cathepsin G is a well-known contributor to autoimmune disease but to our knowledge, this is the first report implicating it as a potential driver of NET formation. We identified the rhsB1 C334A variant as a candidate protein that can suppress IC-mediated NET formation, boost microbial phagocytosis, and potentially impact additional neutrophil effector functions including ROS-mediated microbial killing in phagolysosomes.
MoreTranslated text
Key words
Serpin B1,neutrophil,autoimmunity,immune complexes,activation,NET formation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined