Temperature Dependence of Hole Transport Properties Through Physically Defined Silicon Quantum Dots
APPLIED PHYSICS LETTERS(2020)
Tokyo Inst Technol
Abstract
For future integration of a large number of qubits and complementary metal-oxide-semiconductor (CMOS) controllers, higher operation temperature of qubits is strongly desired. In this work, we fabricate p-channel silicon quantum dot (Si QD) devices on silicon-on-insulator for strong confinement of holes and investigate the temperature dependence of Coulomb oscillations and Coulomb diamonds. The physically defined Si QDs show clear Coulomb diamonds at temperatures up to 25K, much higher than for gate defined QDs. To verify the temperature dependence of Coulomb diamonds, we carry out simulations and find good agreement with the experiment. The results suggest a possibility for realizing quantum computing chips with qubits integrated with CMOS electronics operating at higher temperature in the future.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined