WeChat Mini Program
Old Version Features

Deep-Learning Reconstruction for 7T MP2RAGE and SPACE MRI: Improving Image Quality at High Acceleration Factors.

Zeyu Liu, Vishal Patel,Xiangzhi Zhou,Shengzhen Tao, Thomas Yu, Jun Ma,Dominik Nickel, Patrick Liebig, Erin M Westerhold, Hamed Mojahed,Vivek Gupta,Erik H Middlebrooks

AJNR American journal of neuroradiology(2025)

Cited 0|Views2
Abstract
BACKGROUND AND PURPOSE:Deep learning (DL) reconstruction has been successful in realizing otherwise impracticable acceleration factors and improving image quality in conventional MRI field strengths; however, there has been limited application to ultra-high field MRI.The objective of this study was to evaluate the performance of a prototype DL-based image reconstruction technique in 7T MRI of the brain utilizing MP2RAGE and SPACE acquisitions, in comparison to reconstructions in conventional compressed sensing (CS) and controlled aliasing in parallel imaging (CAIPIRINHA) techniques. MATERIALS AND METHODS:This retrospective study involved 60 patients who underwent 7T brain MRI between June 2024 and October 2024, comprised of 30 patients with MP2RAGE data and 30 patients with SPACE FLAIR data. Each set of raw data was reconstructed with DL-based reconstruction and conventional reconstruction. Image quality was independently assessed by two neuroradiologists using a 5-point Likert scale, which included overall image quality, artifacts, sharpness, structural conspicuity, and noise level. Inter-observer agreement was determined using top-box analysis. Contrast-to-noise ratio (CNR) and noise levels were quantitatively evaluated and compared using the Wilcoxon signed-rank test. RESULTS:DL-based reconstruction resulted in a significant increase in overall image quality and a reduction in subjective noise level for both MP2RAGE and SPACE FLAIR data (all P<0.001), with no significant differences in image artifacts (all P>0.05). When compared to standard reconstruction, the implementation of DL-based reconstruction yielded an increase in CNR of 49.5% [95% CI 33.0-59.0%] for MP2RAGE data and 90.6% [95% CI 73.2-117.7%] for SPACE FLAIR data, along with a decrease in noise of 33.5% [95% CI 23.0-38.0%] for MP2RAGE data and 47.5% [95% CI 41.9-52.6%] for SPACE FLAIR data. CONCLUSIONS:DL-based reconstruction of 7T MRI significantly enhanced image quality compared to conventional reconstruction without introducing image artifacts. The achievable high acceleration factors have the potential to substantially improve image quality and resolution in 7T MRI. ABBREVIATIONS:CAIPIRINHA = Controlled Aliasing In Parallel Imaging Results IN Higher Acceleration; CNR = contrast-to-noise ratio; CS = compressed sensing; DL = deep learning; MNI = Montreal Neurological Institute; MP2RAGE = Magnetization-Prepared 2 Rapid Acquisition Gradient Echoes; SPACE = Sampling Perfection with Application-Optimized Contrasts using Different Flip Angle Evolutions.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined