WeChat Mini Program
Old Version Features

Research on Open-Set Recognition Methods for Rolling Bearing Fault Diagnosis

Jia Xu,Yan Wang, Renyi Xu, Hailin Wang,Xinzhi Zhou

Sensors (Basel, Switzerland)(2025)

School of Electronic Information

Cited 0|Views0
Abstract
In rolling bearing fault diagnosis, when an unknown fault is present, the Closed-Set Recognition (CSR) method tends to misclassify it as a known fault. To address this issue, an Open-Set Recognition (OSR) framework is proposed for rolling bearing fault diagnosis in this study. The framework is built upon a serial multi-scale convolutional prototype learning (SMCPL) network, enhanced with an efficient channel attention (ECA) mechanism to extract the most critical fault features. The extracted features are fed into the Density Peak Clustering (DPC) module, which identifies known and unknown classes based on the computed local densities and relative distances. Finally, validation is performed on the Case Western Reserve University (CWRU) dataset, the Xi’an Jiaotong University rolling bearing accelerated life test dataset (XJTU-SY), and the Paderborn University bearing dataset (PU), Germany, and the framework is comprehensively evaluated in terms of several evaluation metrics, such as normalization accuracy and feature visualization. The experimental results show that SMCPL-ECA-DPC outperforms the comparative methods of SMCPL, CPL, ANEDL, CNN, and OpenMax and has high diagnostic performance in the identification of unknown faults.
More
Translated text
Key words
rolling bearings,Open-Set Recognition,unknown fault diagnosis,multi-scale
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined