On Path to Multimodal Generalist: General-Level and General-Bench
ICML 2025(2025)
Abstract
The Multimodal Large Language Model (MLLM) is currently experiencing rapid growth, driven by the advanced capabilities of language-based LLMs. Unlike their specialist predecessors, existing MLLMs are evolving towards a Multimodal Generalist paradigm. Initially limited to understanding multiple modalities, these models have advanced to not only comprehend but also generate across modalities. Their capabilities have expanded from coarse-grained to fine-grained multimodal understanding and from supporting singular modalities to accommodating a wide array of or even arbitrary modalities. To assess the capabilities of various MLLMs, a diverse array of benchmark test sets has been proposed. This leads to a critical question: We argue that the answer is not as straightforward as it seems. In this project, we introduce an evaluation framework to delineate the capabilities and behaviors of current multimodal generalists. This framework, named , establishes 5-scale levels of MLLM performance and generality, offering a methodology to compare MLLMs and gauge the progress of existing systems towards more robust multimodal generalists and, ultimately, towards AGI (Artificial General Intelligence). Central to our framework is the use of as the evaluative criterion, categorizing capabilities based on whether MLLMs preserve synergy across comprehension and generation, as well as across multimodal interactions.To evaluate the comprehensive abilities of various generalists, we present a massive multimodal benchmark, , which encompasses a broader spectrum of skills, modalities, formats, and capabilities, including over 700 tasks and 325,800 instances. The evaluation results that involve over 100 existing state-of-the-art MLLMs uncover the capability rankings of generalists, highlighting the challenges in reaching genuine AI. We expect this project to pave the way for future research on next-generation multimodal foundation models, providing a robust infrastructure to accelerate the realization of AGI.Project Page: https://generalist.top/,Leaderboard: https://generalist.top/leaderboard/,Benchmark: https://huggingface.co/General-Level/.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined