WeChat Mini Program
Old Version Features

Is It Possible to Develop a Digital Twin for Noise Monitoring in Manufacturing? [version 2; Peer Review: 1 Approved, 3 Approved with Reservations, 1 Not Approved]

Digital Twin(2025)

Cited 0|Views2
Abstract
Noise monitoring is important in the context of manufacturing because it can help maintain a safe and healthy workspace for employees. Current approaches for noise monitoring in manufacturing are based on acoustic sensors, whose measured sound pressure levels (SPL) are shown as bar/curve charts and acoustic heat maps. In such a way, the noise emission and propagation process is not fully addressed. This paper proposes a digital twin (DT) for noise monitoring in manufacturing using augmented reality (AR) and the phonon tracing method (PTM). In the proposed PTM/AR-based DT, the noise is represented by 3D particles (called phonons) emitting and traversing in a spatial domain. Using a mobile AR device (HoloLens 2), users are able to visualize and interact with the noise emitted by machine tools. To validate the feasibility of the proposed PTM/AR-based DT, two use cases are carried out. The first use case is an offline test, where the noise data from a machine tool are first acquired and used for the implementation of PTM/AR-based DT with different parameter sets. The result of the first use case is the understanding between the AR performance of HoloLens 2 (frame rate) and the setting of the initial number of phonons and sampling frequency. The second use case is an online test to demonstrate the in-situ noise monitoring capability of the proposed PTM/AR-based DT. The result shows that our PTM/AR-based DT is a powerful tool for visualizing and assessing the real-time noise in manufacturing systems.
More
Translated text
Key words
Digital twin for physics,augmented reality,noise monitoring,manufacturing systems,phonon tracing method,internet of things,eng
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined