Artificial Intelligence and Whole Slide Imaging, a New Tool for the Microsatellite Instability Prediction in Colorectal Cancer: Friend or Foe?
Critical Reviews in Oncology/Hematology(2025)
Abstract
Colorectal cancer (CRC) is the third most common and second most deadly cancer worldwide. Despite advances in screening and treatment, CRC is heterogeneous and the response to therapy varies significantly, limiting personalized treatment options. Certain molecular biomarkers, including microsatellite instability (MSI), are critical in planning personalized treatment, although only a subset of patients may benefit. Currently, the primary methods for assessing MSI status include immunohistochemistry (IHC) for DNA mismatch repair proteins (MMRs), polymerase chain reaction (PCR)-based molecular testing, or next-generation sequencing (NGS). However, these techniques have limitations, are expensive and time-consuming, and often result in inter-method inconsistencies. Deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H) are critical predictive biomarkers of response to immune checkpoint inhibitor (ICI) therapy and MSI testing is recommended to identify patients who may benefit. There is a pressing need for a more robust, reliable, and cost-effective approach that accurately assesses MSI status. Recent advances in computational pathology, in particular the development of technologies that digitally scan whole slide images (WSI) at high resolution, as well as new approaches to artificial intelligence (AI) in medicine, are increasingly gaining ground. This review aims to provide an overview of the latest findings on WSI and advances in AI methods for predicting MSI status, summarize their applications in CRC, and discuss their strengths and limitations in daily clinical practice.
MoreTranslated text
Key words
MSI,CRC,WSI,AI,Biomarkers
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined