WeChat Mini Program
Old Version Features

Expression of a Modified Avr3a Gene under the Control of a Synthetic Pathogen-Inducible Promoter Leads to Phytophthora Infestans Resistance in Potato.

Friedrich Kauder, Gabor Gyetvai, Klaus Schmidt, Daniel Stirnweis, Tobias Haehre, Kai Prenzler, Anja Maeser, Christine Klapprodt, Florian Tiller,Jens Lübeck,Dietmar J Stahl

Plant biotechnology journal(2025)

Solana Research GmbH

Cited 0|Views0
Abstract
Late blight resistance of potato was improved by the co-expression of the potato resistance gene R3a and the pathogen-inducible avirulence gene Avr3a of Phytopthora infestans. The synthetic pathogen-inducible promoter 2xS-4xD-NpCABEcore, which is composed of the cis-acting elements S and D and the core promoter of the NpCABE gene, was developed for potato. By analysis of 20 core promoters from Solanacea species synthetic promoters of the 2xS-2xD-type were generated which differ in their background activity, strength and promoter inducibility. These data showed that the core promoter plays an important role for the architecture of a synthetic promoter and influences the specificity and strength beside the cis-acting element. The 2xS-2xD-NpCABEcore promoter was further improved by increasing the number of the cis-acting elements resulting in the 2xS-4xD-NpCABEcore promoter. Modified Avr3a alleles, which triggered less cell death than the Avr3aKI allele, were expressed with the optimized synthetic promoter in transgenic potatoes with an R3a gene. The transgenic lines showed less late blight symptoms and up to 60% reduction of sporangia in detached leaf assays. The absence of a negative plant phenotype in the greenhouse demonstrated that the balanced co-expression of a modified Avr3a gene under the control of an optimized synthetic promoter is a promising strategy to increase late blight resistance of potatoes. This concept might be as well applied to other crops since the co-expression of the R3a and Avr3aKI gene induced cell death in leaves of corn, wheat and soybean in a transient assay.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined