23.8 an 88.36TOPS/W Bit-Level-Weight-Compressed Large-Language-Model Accelerator with Cluster-Aligned INT-FP-GEMM and Bi-Dimensional Workflow Reformulation
IEEE International Solid-State Circuits Conference(2025)
关键词
Large Language Models,Nonlinear Function,Energy Conservation,Softmax,Taylor Series,Taylor Expansion,Power Factor,Low Precision,Load Data,Manhattan Distance,Trigonometric Functions,Edge Devices,Efficient Deployment,Powers Of 3,Network-on-chip,Traditional Transformation
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要