[Image Reconstruction for Cerebral Hemorrhage Based on Improved Densely-Connected Fully Convolutional Neural Network].
Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi(2024)
Abstract
Cerebral hemorrhage is a serious cerebrovascular disease with high morbidity and high mortality, for which timely diagnosis and treatment are crucial. Electrical impedance tomography (EIT) is a functional imaging technique which is able to detect abnormal changes of electrical property of the brain tissue at the early stage of the disease. However, irregular multi-layer structure and different conductivity properties of each layer affect image reconstruction of the brain EIT, resulting in low reconstruction quality. To solve this problem, an image reconstruction method based on an improved densely-connected fully convolutional neural network is proposed in this paper. On the basis of constructing a three-layer cerebral model that approximates the real structure of the human head, the nonlinear mapping between the boundary voltage and the conductivity change is determined by network training, which avoids the error caused by the traditional sensitivity matrix method used for solving inverse problem. The proposed method is also evaluated under the conditions with or without noise, as well as with brain model change. The numerical simulation and phantom experimental results show that conductivity distribution of cerebral hemorrhage can be accurately reconstructed with the proposed method, providing a reliable basis for the diagnosis and treatment of cerebral hemorrhage. Also, it promotes the application of EIT in the diagnosis of brain diseases.
MoreTranslated text
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined