Continent-Wide Drivers of Spatial Synchrony in Breeding Demographic Structure Across Wild Great Tit Populations.
Ecology letters(2025)
Edward Grey Institute of Field Ornithology
Abstract
Variation in age structure influences population dynamics, yet we have limited understanding of the spatial scale at which its fluctuations are synchronised between populations. Using 32 great tit populations, spanning 4° W-33° E and 35°-65° N involving > 130,000 birds across 67 years, we quantify spatial synchrony in breeding demographic structure (subadult vs. adult breeders) and its drivers. We show that larger clutch sizes, colder winters, and larger beech crops lead to younger populations. We report distance-dependent synchrony of demographic structure, maintained at approximately 650 km. Despite covariation with demographic structure, we do not find evidence for environmental variables influencing the scale of synchrony, except for beech masting. We suggest that local ecological and density-dependent dynamics impact how environmental variation interacts with demographic structure, influencing estimates of the environment's effect on synchrony. Our analyses demonstrate the operation of synchrony in demographic structure over large scales, with implications for age-dependent demography in populations.
MoreTranslated text
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined