Exploring the Significance of Medical Humanities in Shaping Internship Performance: Insights from Curriculum Categories
MEDICAL EDUCATION ONLINE(2025)
Taipei Vet Gen Hosp
Abstract
Background Medical Humanities (MH) curricula integrate humanities disciplines into medical education to nurture essential qualities in future physicians. However, the impact of MH on clinical competencies during formative training phases remains underexplored. This study aimed to determine the influence of MH curricula on internship performance.Methods The academic records of 1364 medical students across 8 years of admission cohorts were analyzed. Performance in basic sciences, clinical skills, MH, and internship rotations were investigated, including the subgroup analysis of MH curricula. Ten-fold cross-validation machine learning models (support vector machines, logistic regression, random forest) were performed to predict the internship grades. In addition, multiple variables regression was done to know the independent impact of MH on internship grades.Results MH showed the important roles in predicting internship performance in the machine learning model, with substantially reduced predictive accuracy after excluding MH variables (e.g. Area Under the Curve (AUC) declining from 0.781 to 0.742 in logistic regression). Multiple variables regression revealed that MH, after controlling for the scores of other subjects, has the highest odds ratio (OR: 1.29, p < 0.0001) on internship grades. MH explained 29.49% of the variance in internship grades as the primary variable in stepwise regression. In the subgroup analysis of MH curricula, Medical Sociology and Cultural Studies, as well as Communication Skills and Interpersonal Relationships, stood out with AUC values of 0.710 and 0.705, respectively, under logistic regression.Conclusion MH had the strongest predictive association with clinical competence during formative internship training, beyond basic medical sciences. Integrating humanities merits greater prioritization in medical curricula to nurture skilled, compassionate physicians. Further research should investigate the longitudinal impacts of humanities engagement.
MoreTranslated text
Key words
Medical humanities,medical education,internship performance,machine learning regression,multiple logistic regression
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined