Causal Estimands for Analyses of Averted and Avertible Outcomes Due to Infectious Disease Interventions
Epidemiology (Cambridge, Mass)(2025)
Abstract
During the coronavirus disease (COVID-19) pandemic, researchers attempted to estimate the number of averted and avertible outcomes due to vaccination campaigns to quantify public health impact. However, the estimands used in these analyses have not been previously formalized. It is also unclear how these analyses relate to the broader framework of direct, indirect, total, and overall causal effects under interference. Here, using potential outcome notation, we adjust the direct and overall effects to accommodate analyses of averted and avertible outcomes. We use this framework to interrogate the commonly held assumption that vaccine-averted outcomes via direct impact among vaccinated individuals (or vaccine-avertible outcomes via direct impact among unvaccinated individuals) is a lower bound on vaccine-averted (or -avertible) outcomes overall. To do so, we describe a susceptible-infected-recovered-death model stratified by vaccination status. When vaccine efficacies wane, the lower bound fails for vaccine-avertible outcomes. When transmission or fatality parameters increase over time, the lower bound fails for both vaccine-averted and -avertible outcomes. Only in the simplest scenario where vaccine efficacies, transmission, and fatality parameters are constant over time, outcomes averted via direct impact among vaccinated individuals (or outcomes avertible via direct impact among unvaccinated individuals) is a lower bound on overall impact. In conclusion, the lower bound can fail under common violations to assumptions on time-invariant vaccine efficacy, pathogen properties, or behavioral parameters. In real data analyses, estimating what seems like a lower bound on overall impact through estimating direct impact may be inadvisable without examining the directions of indirect effects.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined