Electric Vehicles Charging Scheduling Strategy Based on Time Cost of Users and Spatial Load Balancing in Multiple Microgrids
WORLD ELECTRIC VEHICLE JOURNAL(2025)
Hangzhou Dianzi Univ
Abstract
In a sustainable energy system, managing the charging demand of electric vehicles (EVs) becomes increasingly critical. Uncontrolled charging behaviors of large-scale EV fleets will exacerbate loads imbalanced in a multi-microgrid (MMG). At the same time, the time cost of users will increase significantly. To improve users’ charging experience and ensure stable operation of the MMG, we propose a new joint scheduling strategy that considers both time cost of users and spatial load balancing among MMGs. The time cost encompasses many factors, such as traveling time, queue waiting time, and charging time. Meanwhile, spatial load balancing seeks to mitigate the impact of large-scale EV charging on MMG loads, promoting a more equitable distribution of power resources across the MMG system. Compared to the Shortest Distance Matching Strategy (SDMS) and the Time Minimum Matching Strategy (TMMS) methods, our approach improves the average peak-to-valley ratio by 9.5% and 10.2%, respectively. Similarly, compared to the Load Balancing Matching Strategy (LBMS) and the Improved Load Balancing Matching Strategy (ILBMS) methods, our approach reduces the average time cost by 31.8% and 25% while maintaining satisfactory spatial load balancing. These results demonstrate that the proposed method achieves good results in handling electric vehicle scheduling problems.
MoreTranslated text
Key words
electric vehicles,time cost of users,spatial load balancing,load distribution,safe operation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined