WeChat Mini Program
Old Version Features

A Paradigm of Computer Vision and Deep Learning Empowers the Strain Screening and Bioprocess Detection

Feng Xu, Lihuan Su, Yuan Wang, Kaihao Hu,Ling Liu, Rong Ben,Hao Gao,Ali Mohsin,Ju Chu,Xiwei Tian

BIOTECHNOLOGY AND BIOENGINEERING(2025)

Cited 0|Views8
Abstract
High-performance strain and corresponding fermentation process are essential for achieving efficient biomanufacturing. However, conventional offline detection methods for products are cumbersome and less stable, hindering the "Test" module in the operation of "Design-Build-Test-Learn" cycle for strain screening and fermentation process optimization. This study proposed and validated an innovative research paradigm combining computer vision with deep learning to facilitate efficient strain selection and effective fermentation process optimization. A practical framework was developed for gentamicin C1a titer as a proof-of-concept, using computer vision to extract different color space components across various cultivation systems. Subsequently, by integrating data preprocessing with algorithm design, a prediction model was developed using 1D-CNN model with Z-score preprocessing, achieving a correlation coefficient (R2) of 0.9862 for gentamicin C1a. Furthermore, this model was successfully applied for high-yield strain screening and real-time monitoring of the fermentation process and extended to rapid detection of fluorescent protein expression in promoter library construction. The visual sensing research paradigm proposed in this study provides a theoretical framework and data support for the standardization and digital monitoring of color-changing bioprocesses.
More
Translated text
Key words
bioprocess detection,computer vision,deep learning,fluorescence intensity,gentamicin C1a,strain selection
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined