Novel Genes Associated with Working Memory Are Identified by Combining Connectome, Transcriptome, and Genome
HUMAN BRAIN MAPPING(2025)
Beijing Normal Univ
Abstract
Working memory (WM) plays a crucial role in human cognition. Previous candidate and genome-wide association studies have reported many genetic variations associated with WM. However, little research has examined genetic basis of WM by using transcriptome, even though it reflects gene function more directly than does the genome. Here we propose a new approach to exploring the genetic mechanisms of WM by integrating connectome, transcriptome, and genome data in a high-quality dataset comprising 481 Chinese healthy adults. First, relevance vector regression was used to define WM-related brain regions. Second, genes differentially expressed within these regions were identified using the Allen Human Brain Atlas (AHBA) dataset. Finally, two independent datasets were used to validate these genes' contributions to WM. With this method, we identified 24 novel genes and 20 of them were confirmed in the large-scale datasets of ABCD and UK Biobank. These novel genes were enriched in the cellular component of collagen-containing extracellular matrix and the CCL18 signaling pathway. Our method offers an effective approach to integrating multimodal gene discovery and demonstrates the superiority of expression data. This new method and the newly identified genes deserve more attention in the future.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined