WeChat Mini Program
Old Version Features

Deep Learning-Based Solution for the KdV-family Governing Equations of Ocean Internal Waves

OCEAN MODELLING(2025)

Key Lab Ocean Observat & Forecasting

Cited 0|Views7
Abstract
Internal Solitary Waves (ISWs) are critical for ocean studies due to their large amplitude and long-travel capabilities. Conventionally, the Korteweg-de Vries (KdV) equations and their extensions are employed to simulate ISW properties, but traditional numerical methods lack flexibility and efficiency. This study introduces a universal, deep learning-based model that streamlines solving KdV-family equations. Within the framework of physics-informed neural networks, we implement an optimized Radial Basis Function (RBF) neural network and a new progressive expansion training strategy. This innovation minimizes error during training, leading to efficient convergence. Our model is tested on KdV and forced KdV equations, dimensional and non-dimensional equations using soliton, cnoidal, and dnoidal waveforms to simulate ISW propagation. The model results align with theoretical and numerical benchmarks, as demonstrated in a case study in the Sulu Sea. This paper does not concern ISW dynamics but uses the KdV equation as an example to showcase how to solve the partial differential equations with a new deep-learning method. The developed deep-learning model offers an efficient and accurate approach to solving KdV-family equations in oceanographic studies.
More
Translated text
Key words
Internal wave,Deep-learning,PINN,KdV
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined