WeChat Mini Program
Old Version Features

GARD: A Geometry-Informed and Uncertainty-Aware Baseline Method for Zero-Shot Roadside Monocular Object Detection

Yuru Peng,Beibei Wang, Zijian Yu, Lu Zhang,Jianmin Ji,Yu Zhang,Yanyong Zhang

IEEE ROBOTICS AND AUTOMATION LETTERS(2025)

Univ Sci & Technol China

Cited 0|Views8
Abstract
Roadside camera-based perception methods are in high demand for developing efficient vehicle-infrastructure collaborative perception systems. By focusing on object-level depth prediction, we explore the potential benefits of integrating environmental priors into such systems and propose a geometry-based roadside per-object depth estimation algorithm dubbed GARD. The proposed method capitalizes on the inherent geometric properties of the pinhole camera model to derive depth as well as 3D positions for given 2D targets in roadside-view images, alleviating the need for computationally intensive end-to-end learning architectures for monocular 3D detection. Using only a pre-trained 2D detection model, our approach does not require vast amounts of scene-specific training data and shows superior generalization abilities across varying environments and camera setups, making it a practical and cost-effective solution for monocular 3D object detection.
More
Translated text
Key words
Three-dimensional displays,Cameras,Roads,Depth measurement,Object detection,Estimation,Feature extraction,Detectors,Deep learning,Accuracy,Computer vision for automation,intelligent transport systems,object detection
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined