WeChat Mini Program
Old Version Features

Possible Signal of an Exotic $$I=1$$ I = 1 , $$J=2$$ J = 2 State in the $$B \rightarrow D^{*-}D^+K^+$$ B → D ∗ - D + K + Reaction

European Physical Journal C Particles and Fields(2024)

Department of Physics

Cited 0|Views2
Abstract
Abstract We study the $$B^+ \rightarrow D^{*-}D^+K^+$$ B + → D ∗ - D + K + reaction, showing that a peak in the $$D^+K^+$$ D + K + mass distribution around $$2834 \text { MeV}$$ 2834 MeV reported by LHCb could be associated with a theoretical exotic state with that mass, a width of $$19 \text { MeV}$$ 19 MeV and $$J^P=2^+$$ J P = 2 + , stemming from the interaction of the $$D^{*+}K^{*+}$$ D ∗ + K ∗ + and $$D^{*+}_s \rho ^+$$ D s ∗ + ρ + channels, which is a partner of the $$0^+$$ 0 + $$T_{c{\bar{s}}}(2900)$$ T c s ¯ ( 2900 ) . We show that the data is compatible with this assumption, but also see that the mass distribution itself cannot discriminate between the spins $$J=0$$ J = 0 , 1, 2 of the state. Then we evaluate the momenta of the angular mass distribution and show that they are very different for each of the spin assumptions, and that the momenta coming from interference terms have larger strength at the resonant energy than the peaks seen in the angular integrated mass distribution. We make a call for the experimental determination of these magnitudes, which has already been used by the LHCb in related decay reactions.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined