WeChat Mini Program
Old Version Features

Research on Quantitative Identification of Three-Dimensional Connectivity of Fractured-Vuggy Reservoirs

Energy Engineering(2024)

Exploration and Development Research Institute

Cited 0|Views26
Abstract
The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich. The connectivity of carbonate reservoirs is complex, and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs. Thus, effective prediction of fractured-vuggy reservoirs is difficult. In view of this, this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir. To identify the complex connectivity among pores, fractures, and vugs, a simplified one-dimensional connectivity model is established by using the meshless connection element method (CEM). Considering that different types of connection units have different flow characteristics, a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed. By automatic history matching, the dynamic production data is fitted in real-time, and the characteristic parameters of the connection unit are inverted. Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90% of the fine grid model, while the dynamic simulation efficiency is much higher with good accuracy.
More
Translated text
Key words
Fractured-vuggy reservoir,three-dimensional connectivity,connection unit,dynamic prediction,automatic history matching
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined