WeChat Mini Program
Old Version Features

Effects of Al3+ on Thermochemical Sulphate Reduction (TSR) at 250 °C to 350 °C under Vapour-Saturated Pressures: A Raman Spectroscopic Investigation

Yun-He Zhou,Lin-Bo Shang,I-Ming Chou, Chen,Zi-Qi Jiang,Xin-Song Wang, Jian-Guo Li

ORE GEOLOGY REVIEWS(2025)

Chinese Acad Sci

Cited 0|Views4
Abstract
In geological processes, thermochemical sulphate reduction (TSR) is a significant way to transform oxidising sulphur into reducing sulphur, such as H2S, that can promote the formation of metal sulphide deposits. The occurrence of TSR is a complex process, where all kinds of sulphate, organic matter, and catalysis materials are involved, in which Al exists commonly in geological background. In order to figure out the function of Al in the TSR process, a series of experiments were conducted to investigate the TSR by using fused silica capillary capsules combined with Raman spectroscopy at temperatures ranging from 250 degrees C to 350 degrees C in this study. Ethanol (cracked into ethylene by heating) or acetic acid was used as reducing agents, and sodium sulphate or magnesium sulphate as oxidising agents, and the AlCl3 was introduced as a variable to investigate its effect on the initiation of TSR. Raman spectra were collected from the quenched and in-situ experiments. The results indicate that the addition of AlCl3 favours the initiation of TSR. In-situ Raman investigation reveals that HSO4- is the dominant sulphate species involved in TSR under our experimental conditions. This facilitating effect of AlCl3 on TSR has been attributed to the increased acidity in solution caused by the release of H+ through the formation of Al3+-bearing minerals such as natroalunite, where the released H+ combines with SO4 2-to form HSO4- . And SO2 was detected as an intermediate product during the reduction of HSO4- by in situ Raman spectroscopy. The experimental results imply that it is possible that the TSR can occur and accumulate enough reduced sulphur in a short period of time in an aluminium-rich geological environment at temperatures as low as 250 degrees C.
More
Translated text
Key words
In-situ Raman spectra,FSCCs,TSR,Al3+
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined