DETRDistill: A Simple Knowledge Distillation Framework for DETR-Families
ICLR 2023(2023)
Abstract
Transformer-based detectors (DETRs) have attracted great attention due to their sparse training paradigm and the removal of post-processing operations, but the huge model can be computationally time-consuming and difficult to be deployed in real-world applications. To tackle this problem, knowledge distillation (KD) can be employed to compress the huge model by constructing a simple teacher-student learning framework. Different from the traditional CNN detectors, where the distillation targets can be naturally aligned through the feature map, DETR regards object detection as a set prediction problem, leading to an unclear relationship between teacher and student during distillation. In this paper, we propose DETRDistill, a novel knowledge distillation dedicated to DETR-families. We first explore a sparse matching paradigm with progressive stage-by-stage instance distillation. Considering the diverse attention mechanisms adopted in different DETRs, we propose attention-agnostic feature distillation module to overcome the ineffectiveness of conventional feature imitation. Finally, to fully leverage the intermediate products from the teacher, we introduce teacher-assisted assignment distillation, which greatly alleviates the instability of label assignment caused by bipartite graph matching. Extensive experiments demonstrate that our distillation method achieves significant improvement on various competitive DETR approaches, without introducing extra consumption in the inference phase. To the best of our knowledge, this is the first systematic study to explore a general distillation method for DETR-style detectors.
MoreTranslated text
Key words
Knowledge Distillation,DETR,Transformer,Model Compression
求助PDF
上传PDF
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined