WeChat Mini Program
Old Version Features

N-Type Conjugated Polymers Based on Double B←N Bridged Bipyridine Unit

Accounts of chemical research(2024)

Cited 0|Views1
Abstract
ConspectusBoth p-type conjugated polymers and n-type conjugated polymers are required for organic optoelectronic devices, such as organic solar cells (OSCs), organic field-effect transistors (OFETs), organic thermoelectrics (OTEs), etc. The development of n-type conjugated polymers lags far behind that of the p-type counterparts in view of material diversity and optoelectronic device performance. This is mainly due to the lack of strong electron-withdrawing building blocks, which are always based on the imide unit. Double boron-nitrogen coordination bond (B←N) bridged bipyridine (BNBP), which was first developed in 2016, is an alternative kind of electron-withdrawing building block based on a B←N unit. BNBP itself possesses a planar and fixed configuration, low-lying electronic energy levels, strong fluorescence, and facile functionalization. A family of BNBP-based conjugated polymers has been developed. They show excellent and tunable optoelectronic properties, such as high electron mobility, low-lying and tunable lowest unoccupied molecular orbital (LUMO) energy level (ELUMO), medium bandgap, narrow absorption spectra in the visible range, high fluorescence quantum efficiency, etc. With rational molecular design of BNBP-based conjugated polymers, they have been widely used in organic optoelectronic devices with high performance, including OSCs, OFETs, and OTEs, indoor photovoltaics (IPVs), organic light-emitting diodes (OLEDs), organic photodetectors (OPDs), etc. Therefore, BNBP-based conjugated polymers have become an important class of optoelectronic materials. In this Account, we summarize the research progress on BNBP-based conjugated polymers.At first, we discuss BNBP itself, including its molecular design, synthesis, chemistry, and optoelectronic properties. Then we introduce the optoelectronic properties of BNBP-based conjugated polymers, including their light absorption property, fluorescence, electron mobility, and frontier electronic energy levels. We have systematically elucidated the relationship between the chemical structures, optoelectronic properties, and optoelectronic device performance of BNBP-based n-type conjugated polymers. The unique property of BNBP-based conjugated polymers is the high electron mobility in the amorphous state. Other noteworthy properties of these polymers are the medium bandgap and absorption spectra in the visible range. Next, we discuss the applications of BNBP-based conjugated polymers in OSCs, IPVs, OFETs, OTEs, OPDs, and OLEDs. The excellent optoelectronic device performance is noteworthy, such as power conversion efficiency (PCE) of 10% in OSCs, PCE of 26% in IPVs, electron mobility of 0.3 cm2 V-1 s-1 in OFETs, power factor of 25 μW m-1 K-2 in OTEs, specific detectivity of 1.79 × 1013 cm Hz1/2 W-1 in OPDs. Finally, we propose that great attention should be paid to the deep understanding of the electronic structures of BNBP itself and BNBP-based conjugated polymers as well as the new applications of BNBP-based conjugated polymers.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined