Comprehensive Evaluation of UV Inactivation of E. Coli Using Multiple Gene Targets and Real-Time Quantitative PCR
WATER RESEARCH X(2025)
Univ Windsor
Abstract
UV disinfection is extensively used for wastewater disinfection and disinfection efficiency is commonly monitored using culture-based enumeration of E. coli. While culture-independent real-time quantitative polymerase chain reaction (qPCR) based methods are attractive due to faster turnaround and easier application, previous attempts with qPCR to monitor disinfection have been unsuccessful. In this study, the effect of UV irradiation on a pure E. coli culture was examined in collimated beam (CB) experiments and monitored using both a culturing technique and DNA damage quantified using both short amplicon (SA; <∼200 bp) qPCR and longer amplicon (LA; ∼500-bp) qPCR. The results, covering a UV dose range of 0 - 20 mJ/cm2 commonly used for wastewater disinfection, indicate a correlation between DNA gene damage quantified by both SA- and LA-qPCR and the decline in E. coli observed through culture-based methods. This demonstrates the potential of qPCR to serve as rapid alternative for monitoring wastewater disinfection efficacy. Furthermore, LA-qPCR was observed to be more sensitive than SA-qPCR. The results using LA-qPCR also revealed that UV exposure caused widespread and indiscriminate damage to E. coli’s genome, which is considered critical for its function and survival. The combined effect of UV on E. coli’s ability to function, grow or repair damage is suggested as the reason for the decline in culturability observed.
MoreTranslated text
Key words
Wastewater disinfection,UV inactivation,E. coli enumeration,Real-time quantitative,PCR,Culture-independent pPCR
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined