Mechanisms of Pore Structure Evolution During Coal Heating: Insights from the Size and Direction of Aromatic Rings
FUEL(2025)
Heilongjiang Univ Sci & Technol
Abstract
Coalbed methane (CBM) is stored and transported in coal pores, and the size, shape, and connectivity of coal pores directly affect the CBM endowment state and transport process, which have direct implications for gas disaster prevention and CBM mining. However, previous studies on the characterization and genesis of coal nanopores have mainly focused on mineral composition and molecular structure, paying relatively little attention to the effect of the size and directionality of aromatic structures on pore formation. This study determined the nanopore characteristics and the relationship of coal nanopores with aromatic ring size and ordering. To this end, coal samples of different maturity levels, which were obtained through heating under an open-exchange system, were analyzed through Scanning Electron Microscopy, Mercury Intrusion Porosimetry, Low Temperature Nitrogen Adsorption, and High-Resolution Transmission Electron Microscope. The results showed that the pores transitioned from organic matter pores to microfractures with the increase of coal maturity. Moreover, the size of aromatic rings gradually increases and the directionality is also gradually enhanced. The diameter of pores with the smallest throat gradually decreases with the increase of the coal rank, and the volume of mesopores exhibits a trend of initial increase followed by a decrease. The volume of macropores exhibits a trend of initial slow increase followed by a rapid increase with the rise of coal rank. The average fractal dimension of macropores decreases with increasing coal maturity, indicating that the non-homogeneity of pore structure gradually decreases and the pore-fracture system tends to homogenize. The average fractal dimension of mesopores shows a fluctuating change trend of low-high-low-high with the increase of coal rank. The relationship between aromatic ring sizes and nanopores shows that pores of 2-9 nm may be controlled by aromatic rings of 5.5-14.4 & Aring;, and 9-10 nm pores may be controlled by 5.5-7.4 & Aring; and 7.5-11.4 & Aring; aromatic rings. The control of 10-15 nm pores is unclear, and 15-50 nm pores may be controlled by 3.0-5.4 & Aring; aromatic rings.
MoreTranslated text
Key words
Coal,Pore characteristics,Aromatic ring structure
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined