WeChat Mini Program
Old Version Features

All Time-Scale Decomposition Method and Its Application in Gear Fault Diagnosis

STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL(2024)

Hunan Univ

Cited 1|Views5
Abstract
Adaptive signal decomposition methods, especially without parameters, have become a popular way of diagnosing mechanical faults due to their capability to process mechanical vibration signals adaptively. Empirical mode decomposition (EMD), local mean decomposition (LMD), and local characteristic-scale decomposition (LCD) are typical parameterless adaptive signal decomposition methods currently applied to mechanical fault diagnosis. All of these methods use extreme points to construct baselines, and the mono-component signals are decomposed from an original signal by multiple sift. However, since these methods define time-scale parameters only through extreme points, they are prone to lose the local feature information of an original signal and lead to mode mixing. Aiming at the above problems, the time-scale parameters is defined by using extreme points and zero crossing points simultaneously in this paper. Therefore, we propose a new adaptive signal decomposition method called all time-scale decomposition (ATD). A complex signal can be adaptively decomposed into multiple independent all time-scale components by the ATD method. The baselines of ATD are constructed jointly by extreme points and zero crossing points, so ATD can extract more local feature information of a signal to suppress the mode mixing. First, the principle of ATD is proposed and the method of determining zero crossing points is introduced in this paper. Then, an empirical formula for compensation factor used to determine zero crossing points is deduced. Finally, ATD is verified by the simulation signals and gear signals, respectively. The results indicate that ATD has stronger mode mixing suppression capability and decomposition performance than EMD, LMD, and LCD, and it can be effectively used for gear fault diagnosis.
More
Translated text
Key words
All time-scale decomposition,zero crossing point,gear,fault diagnosis
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined