WeChat Mini Program
Old Version Features

Automated Organ Segmentation for Radiation Therapy: A Comparative Analysis of AI-Based Tools Versus Manual Contouring in Korean Cancer Patients

CANCERS(2024)

Cited 0|Views3
Abstract
Background: Accurate delineation of tumors and organs at risk (OARs) is crucial for intensity-modulated radiation therapy. This study aimed to evaluate the performance of OncoStudio, an AI-based auto-segmentation tool developed for Korean patients, compared with Protégé AI, a globally developed tool that uses data from Korean cancer patients. Methods: A retrospective analysis of 1200 Korean cancer patients treated with radiotherapy was conducted. Auto-contours generated via OncoStudio and Protégé AI were compared with manual contours across the head and neck and thoracic, abdominal, and pelvic organs. Accuracy was assessed using the Dice similarity coefficient (DSC), mean surface distance (MSD), and 95% Hausdorff distance (HD). Feedback was obtained from 10 participants, including radiation oncologists, residents, and radiation therapists, via an online survey with a Turing test component. Results: OncoStudio outperformed Protégé AI in 85% of the evaluated OARs (p < 0.001). For head and neck organs, OncoStudio achieved a similar DSC (0.70 vs. 0.70, p = 0.637) but significantly lower MSD and 95% HD values (p < 0.001). In thoracic organs, OncoStudio performed excellently in 90% of cases, with a significantly greater DSC (male: 0.87 vs. 0.82, p < 0.001; female: 0.95 vs. 0.87, p < 0.001). OncoStudio also demonstrated superior accuracy in abdominal (DSC 0.88 vs. 0.81, p < 0.001) and pelvic organs (male: DSC 0.95 vs. 0.85, p < 0.001; female: DSC 0.82 vs. 0.73, p < 0.001). Clinicians favored OncoStudio in 70% of cases, with 90% endorsing its clinical suitability for Korean patients. Conclusions: OncoStudio, which is tailored for Korean patients, demonstrated superior segmentation accuracy across multiple anatomical regions, suggesting its suitability for radiotherapy planning in this population.
More
Translated text
Key words
auto-segmentation,radiation therapy,OncoStudio,Prot & eacute,g & eacute,AI,IMRT,Korean patients,organs at risk
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined