Latitudinal Distribution of Dayside Magnetospheric Currents Based on Cluster Observations
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS(2024)
Beihang Univ
Abstract
Based on the curlometer method, we calculate the azimuthal component of the current density from nearly 19 years of Fluxgate Magnetometer (FGM) data of Cluster and investigate its latitudinal distribution in the dayside noon sector (09:00-15:00 magnetic local time, MLT). A crossing event in the noon meridian plane shows an unexpected eastward current at a geocentric distance of 8 RE, away from the equator with latitudes of 30-40 degrees. Further statistical results of the current distribution show that, the topology of the current can be radially divided into the inner and outer branches over the whole rxy - z plane (rxy = x2+y2 $\sqrt{{x}<^>{2}+{y}<^>{2}}$ and z are in solar magnetic (SM) coordinates), with the separation point of these two branches at a geocentric distance of about 8 RE. The current variations of the inner and outer branches are different under different Kp, solar wind flow speed Vsw, and solar wind dynamic pressure Pdyn. It is shown that the current densities in both the inner and outer branches increase significantly with the Kp. High solar wind dynamic pressure enhances the current density of the outer branch, while high solar wind speed, on the contrary, enhances that of the inner branch. The formation of the outer branch may be related to the anisotropy of plasma pressure. In-situ statistics of the current distribution in the dayside is presented The topology of the current in the dayside can be divided into the inner and outer branches The variation of the current density in the two branches with changes in solar wind conditions and geomagnetic activity are different
MoreTranslated text
Key words
magnetosphere,ring current
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined