WeChat Mini Program
Old Version Features

Development and Validation of a Chronic Kidney Disease Progression Model Using Patient-Level Simulations

RENAL FAILURE(2024)

IQVIA Global HEOR

Cited 0|Views3
Abstract
Chronic disease progression models are available for several highly prevalent conditions. For chronic kidney disease (CKD), the scope of existing progression models is limited to the risk of kidney failure and major cardiovascular (CV) events. The aim of this project was to develop a comprehensive CKD progression model (CKD-PM) that simulates the risk of CKD progression and a broad range of complications in patients with CKD. A series of literature reviews informed the selection of risk factors and identified existing risk equations/algorithms for kidney replacement therapy (KRT), CV events, other CKD-related complications, and mortality. Risk equations and transition probabilities were primarily sourced from publications produced by large US and international CKD registries. A patient-level, state-transition model was developed with health states defined by the Kidney Disease Improving Global Outcomes categories. Model validation was performed by comparing predicted outcomes with observed outcomes in the source cohorts used in model development (internal validation) and other cohorts (external validation). The CKD-PM demonstrated satisfactory modeling properties. Accurate prediction of all-cause and CV mortality was achieved without calibration, while prediction of CV events through CKD-specific equations required implementation of a calibration factor to balance time-dependent versus baseline risk. Predicted annual changes in estimated glomerular filtration rate (eGFR) and urine albumin-creatinine ratio were acceptable in comparison to external values. A flexible eGFR threshold for KRT equations enabled accurate prediction of these events. This CKD-PM demonstrated reliable modeling properties. Both internal and external validation revealed robust outcomes.
More
Translated text
Key words
Chronic kidney disease,disease progression model,microsimulation,validation
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined