WeChat Mini Program
Old Version Features

A Fine-Grained Approach for Android Taint Analysis Based on Labeled Taint Value Graphs

Dongming Xiang, Shuai Lin, Ke Huang,Zuohua Ding,Guanjun Liu, Xiaofeng Li

COMPUTERS & SECURITY(2025)

Zhejiang Sci Tech Univ

Cited 0|Views5
Abstract
Static taint analysis is a widely used method to identify vulnerabilities in Android applications. However, the existing tools for static analysis often struggle with processing times, particularly when dealing with complex real-world programs. To reduce time consumption, some tools choose to sacrifice analytical precision, e.g., FastDroid sets an upper limit for analysis iterations in Android applications. In this paper, we propose a labeled taint value graph (LTVG) to store taint flows, and implement a fine-grained analysis tool called LabeledDroid. This graph is constructed based on the taint value graph (TVG) of FastDroid, and takes into account both precision and time consumption. That is, we decompile an Android app into Jimple statements, develop finegrained propagation rules to handle List, and construct LTVGs according to these rules. Afterwards, we traverse LTVGs to obtain high-precision taint flows. An analysis of 39 apps from the TaintBench benchmark shows that LabeledDroid is 0.87 s faster than FastDroid on average. Furthermore, if some common accuracy parameters are adapted in both LabeledDroid and FastDroid, the experiment demonstrates that the former is more scalable. Moreover, the maximum analysis time of LabeledDroid is less than 200 s and its average time is 46.25 s, while FastDroid sometimes experiences timeouts with durations longer than 600 s. Additionally, LabeledDroid achieves a precision of 70% in handling lists, while FastDroid and TaintSA achieve precisions of 38.9% and 41.2%, respectively.
More
Translated text
Key words
Static taint analysis,Android security,Vulnerability detection,Fine-grained analysis
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined