Carbothermally Synthesized, Lignin Biochar-Based, Embedded and Surface Deposited Nano Zero-Valent Iron Composites: Comparative Material Characterization, Selective Gas Adsorption and Nitroaromatics Remediation
Colloids and Surfaces C Environmental Aspects(2024)
College of Chemical Sciences
Abstract
Biochar (BC) with nanoscale zero-valent iron (nZVI) incorporation offers advantageous materials for water purification. While the most common approach for nZVI incorporation is the deposition on -a carrier surface, embedding in -a support matrix has also been reported. However, the behavior of the embedded material in contaminant removal has not been adequately studied -nor the characteristics and the remediation capabilities of the two materials have been compared. Present study focuses on preparing and extensively characterizing two materials: nZVI embedded in (Lig-e-nZVI) and surface deposited on (Lig-s-nZVI) lignin BC followed by a comparative study of remedial action for two nitroaromatics, p-nitroaniline (pNA) and p-nitrophenol (pNP). The synthesis of Lig-e-nZVI and Lig-s-nZVI involved simultaneous and subsequent pyrolysis of lignin and carbothermal reduction of the iron salt, respectively. Lig-e-nZVI showed enhanced porosity. XRD confirmed the formation of Fe0. HR-TEM images proved the core-shell structure of nZVI, and an interlayer spacing of 0.36 nm of the shell verified that the Fe0 particles were encapsulated with graphene while an iron carbide inner layer was also observed, thinner in Lig-e-nZVI and thicker in Lig-s-nZVI. A band gap energy of 2.54 eV suggested photocatalytic activity for both materials. Best fitted Sips isotherms showed 23.1 and 13.1 mg g−1 capacities for Lig-s-nZVI in pNP and pNA adsorption respectively. Highest stability was portrayed by Lig-e-nZVI over 4 regeneration cycles. The physicochemical features of the developed materials further enabled selective gas adsorption. Findings provide new insights into physicochemical characteristics and remedial actions of differently synthesized nZVI-BC composites.
MoreTranslated text
Key words
Biochar,Nanoscale zero-valent iron,Para-Nitroaniline,Para-Nitrophenol,Selective gas adsorption,Graphene encapsulation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined