WeChat Mini Program
Old Version Features

Dynamic Control of Luminescence Chirality Through Achiral Metasurfaces

arXiv · (2024)

Cited 0|Views8
Abstract
Circularly polarized light (CPL) sources are essential for chiroptics, spintronics, quantum optics, and asymmetric photochemistry. However, conventional approaches fail to simultaneously realize a large luminescence dissymmetry factor (glum) and wide-range tuning of glum in a compact device. Chiral luminophores usually suffer from low glum due to their small molecular sizes. Although chiral metasurfaces can enable a large glum, they lack post-fabrication tunability. Here, we demonstrate that it is possible to achieve high-purity circularly polarized luminescence using achiral metasurfaces. These metasurfaces enable optical tuning and even reversal of luminescence chirality by uncovering and utilizing giant near-field chirality. We validate our concept with upconversion nanoparticles and downshifting dye molecules, experimentally achieving a large glum of up to 1.65, which can be actively and continuously tuned between 1.65 and -1.58. Our approach promises important applications in next-generation CPL sources and detectors, and tunable quantum devices.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined