Task Driven Sensor Layouts - Joint Optimization of Pixel Layout and Network Parameters
2024 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY, ICCP 2024(2024)
Univ Siegen | Univ Mannheim
Abstract
Computational imaging concepts based on integrated edge AI and neural sensor concepts solve vision problems in an end-to-end, task-specific manner, by jointly optimizing the algorithmic and hardware parameters to sense data with high information value. They yield energy, data, and privacy efficient solutions, but rely on novel hardware concepts, yet to be scaled up. In this work, we present the first truly end-to-end trained imaging pipeline that optimizes imaging sensor parameters, available in standard CMOS design methods, jointly with the parameters of a given neural network on a specific task. Specifically, we derive an analytic, differentiable approach for the sensor layout parameterization that allows for task-specific, locally varying pixel resolutions. We present two pixel layout parameterization functions: rectangular and curvilinear grid shapes that retain a regular topology. We provide a drop-in module that approximates sensor simulation given existing high-resolution images to directly connect our method with existing deep learning models. We show for two different downstream tasks, classification and semantic segmentation, that network predictions benefit from learnable pixel layouts.
MoreTranslated text
Key words
Sensors,Sensor Optimization,Computer Vision,Semantic Segmentation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2009
被引用17 | 浏览
2014
被引用50 | 浏览
2018
被引用12 | 浏览
2018
被引用482 | 浏览
2021
被引用124 | 浏览
2023
被引用11 | 浏览
2021
被引用22 | 浏览
2022
被引用4 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper