Neural oscillation in bipolar disorder: a systematic review of resting-state electroencephalography studies.
Frontiers in neuroscience(2024)
National Clinical Research Center for Mental Disorders & National Center for Mental Disorders
Abstract
Bipolar disorder (BD) is a severe psychiatric disease with high rates of misdiagnosis and underdiagnosis, resulting in a significant disease burden on both individuals and society. Abnormal neural oscillations have garnered significant attention as potential neurobiological markers of BD. However, untangling the mechanisms that subserve these baseline alternations requires measurement of their electrophysiological underpinnings. This systematic review investigates consistent abnormal resting-state EEG power of BD and conducted an initial exploration into how methodological approaches might impact the study outcomes. This review was conducted in Pubmed-Medline and Web-of-Science in March 2024 to summarize the oscillation changes in resting-state EEG (rsEEG) of BD. We focusing on rsEEG to report spectral power in different frequency bands. We identified 10 studies, in which neural oscillations was compared with healthy individuals (HCs). We found that BD patients had abnormal oscillations in delta, theta, beta, and gamma bands, predominantly characterized by increased power, indicating potential widespread neural dysfunction, involving multiple neural networks and cognitive processes. However, the outcomes regarding alpha oscillation in BD were more heterogeneous, which is thought to be potentially influenced by the disease severity and the diversity of samples. Furthermore, we conducted an initial exploration into how demographic and methodological elements might impact the study outcomes, underlining the importance of implementing standardized data collection methods. Key aspects we took into account included gender, age, medication usage, medical history, the method of frequency band segmentation, and situation of eye open/eye close during the recordings. Therefore, in the face of abnormal multiple oscillations in BD, we need to adopt a comprehensive research approach, consider the multidimensional attributes of the disease and the heterogeneity of samples, and pay attention to the standardized experimental design to improve the reliability and reproducibility of the research results.
MoreTranslated text
Key words
Bipolar disorder,biological markers,neural oscillation,rsEEG,spectral power
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined