WeChat Mini Program
Old Version Features

Amygdala Connectivity is Associated with Withdrawn/depressed Behavior in a Large Sample of Children from the Adolescent Brain Cognitive Development (ABCD) Study®

PSYCHIATRY RESEARCH-NEUROIMAGING(2024)

Univ Vermont

Cited 0|Views13
Abstract
Many psychopathologies tied to internalizing symptomatology emerge during adolescence, therefore identifying neural markers of internalizing behavior in childhood may allow for early intervention. We utilized data from the Adolescent Brain and Cognitive Development (ABCD) Study® to evaluate associations between cortico-amygdalar functional connectivity, polygenic risk for depression (PRSD), traumatic events experienced, internalizing behavior, and internalizing subscales: withdrawn/depressed behavior, somatic complaints, and anxious/depressed behaviors. Data from 6371 children (ages 9-11) were used to analyze amygdala resting-state fMRI connectivity to Gordon parcellation based whole-brain regions of interest (ROIs). Internalizing behaviors were measured using the parent-reported Child Behavior Checklist. Linear mixed-effects models were used to identify patterns of cortico-amygdalar connectivity associated with internalizing behaviors. Results indicated left amygdala connections to auditory, frontoparietal network (FPN), and dorsal attention network (DAN) ROIs were significantly associated with withdrawn/depressed symptomatology. Connections relevant for withdrawn/depressed behavior were linked to social behaviors. Specifically, amygdala connections to DAN were associated with social anxiety, social impairment, and social problems. Additionally, an amygdala connection to the FPN ROI and the auditory network ROI was associated with social anxiety and social problems, respectively. Therefore, it may be important to account for social behaviors when looking for brain correlates of depression.
More
Translated text
Key words
Amygdala connectivity,Depression,Internalizing,Resting-state fMRI,ABCD study,Social behaviors
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined