WeChat Mini Program
Old Version Features

Performance of CMIP5 and CMIP6 Models in Reproducing the Interdecadal Pacific Oscillation and Its Global Impacts

International Journal of Climatology(2024)

Chinese Acad Sci

Cited 0|Views5
Abstract
This study assessed the capability of the historical simulations of phase 5 and 6 of the Coupled Model Intercomparison Project (CMIP5/6) in reproducing the temporal and spatial characteristics of the Interdecadal Pacific Oscillation (IPO) and its impact on global surface air temperature (SAT), surface equivalent potential temperature (Thetae_sfc) and precipitation. The IPO index time series simulated by CMIP5/6 models deviated from observations and struggled to capture the phase evolution characteristics of the IPO. Nevertheless, CMIP5/6 models successfully captured the horseshoe‐shaped sea surface temperature anomaly in the Pacific. Additionally, the CMIP5/6 models were able to simulate the IPO's 10–30‐year period. Notably, the simulated IPO index exhibited a statistically significant upward trend, which was absent in observations. Additionally, the IPO‐related global land SAT, Thetae_sfc and precipitation simulated by CMIP5/6 models performed differently in boreal winter and boreal summer. Furthermore, the IPO‐related global land SAT performed better in CMIP5/6 models during boreal winter than that in boreal summer. In CMIP6 models, it improved during both boreal winter and summer compared to CMIP5 models. In terms of the IPO‐related global land Thetae_sfc, CMIP5/6 models also performed better during boreal winter than in boreal summer. However, CMIP5 models outperformed CMIP6 models during the boreal summer. In terms of the IPO‐related global land precipitation, CMIP5/6 models performed better during boreal summer compared to boreal winter. Moreover, the IPO‐related global land precipitation in CMIP6 models improved significantly in boreal winter, but almost the same in boreal summer, compared to CMIP5 models. Further studies showed that the enhancements in simulating IPO's spatial pattern did not correspond to improvements in the model's ability to simulate IPO's global teleconnections.
More
Translated text
Key words
CMIP5,CMIP6,global teleconnection,IPO
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined