WeChat Mini Program
Old Version Features

Intergalactic Medium Rotation Measure of Primordial Magnetic Fields

ASTROPHYSICAL JOURNAL(2024)

Univ Bologna

Cited 0|Views13
Abstract
The Faraday rotation effect, quantified by the Rotation Measure (RM), is a powerful probe of the large-scale magnetization of the Universe - tracing magnetic fields not only on galaxy and galaxy cluster scales but also in the intergalactic Medium (IGM; referred to as $\mathrm{RM}_{\text{IGM}}$). The redshift dependence of the latter has extensively been explored with observations. It has also been shown that this relation can help to distinguish between different large-scale magnetization scenarios. We study the evolution of this $\mathrm{RM}_{\text{IGM}}$ for different primordial magnetogenesis scenarios to search for the imprints of primordial magnetic fields (PMFs; magnetic fields originating in the early Universe) on the redshift-dependence of $\mathrm{RM}_{\text{IGM}}$. We use cosmological magnetohydrodynamic (MHD) simulations for evolving PMFs during large-scale structure formation, coupled to the light cone analysis to produce a realistic statistical sample of mock $\mathrm{RM}_{\text{IGM}}$ images. We study the predicted behavior for the cosmic evolution of $\mathrm{RM}_{\text{IGM}}$ for different correlation lengths of PMFs, and provide fitting functions for their dependence on redshifts. We compare these mock RM trends with the recent analysis of the the LOw-Frequency ARray (LOFAR) RM Grid and find that large-scale-correlated PMFs should have (comoving) strengths $\lesssim 0.75$ nanoGauss, if originated during inflation with the scale invariant spectrum and (comoving) correlation length $\sim 19$ cMpc/h or $ \lesssim 30$ nanoGauss if they originated during phase-transition epochs with the comoving correlation length $\sim 1$ cMpc/h. Our findings agree with previous observations and confirm the results of semi-analytical studies, showing that upper limits on the PMF strength decrease as their coherence scales increase.
More
Translated text
Key words
Extragalactic magnetic fields,Primordial magnetic fields,Magnetohydrodynamical simulations,Intergalactic medium,Large-scale structure of the universe
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined