Deep Learning for Identifying Bee Species from Images of Wings and Pinned Specimens
PLoS ONE(2024)
Kansas State Univ
Abstract
One of the most challenging aspects of bee ecology and conservation is species-level identification, which is costly, time consuming, and requires taxonomic expertise. Recent advances in the application of deep learning and computer vision have shown promise for identifying large bumble bee (Bombus) species. However, most bees, such as sweat bees in the genus Lasioglossum, are much smaller and can be difficult, even for trained taxonomists, to identify. For this reason, the great majority of bees are poorly represented in the crowdsourced image datasets often used to train computer vision models. But even larger bees, such as bumble bees from the B. vagans complex, can be difficult to separate morphologically. Using images of specimens from our research collections, we assessed how deep learning classification models perform on these more challenging taxa, qualitatively comparing models trained on images of whole pinned specimens or on images of bee forewings. The pinned specimen and wing image datasets represent 20 and 18 species from 6 and 4 genera, respectively, and were used to train the EfficientNetV2L convolutional neural network. Mean test precision was 94.9% and 98.1% for pinned and wing images respectively. Results show that computer vision holds great promise for classifying smaller, more difficult to identify bees that are poorly represented in crowdsourced datasets. Images from research and museum collections will be valuable for expanding classification models to include additional species, which will be essential for large scale conservation monitoring efforts.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined