Machine Learning-Assisted Equivalent Circuit Identification for Dielectric Spectroscopy of Polymers
ELECTROCHIMICA ACTA(2024)
BAM Fed Inst Mat Res & Testing
Abstract
Polymers have become indispensable across fields of application, and understanding their structure–property relationships and dynamic behaviour is essential for performance optimization. Polymer membranes, particularly ion exchange membranes, play a crucial role in renewable energy conversion technologies, fuel cells, solar energy conversion, and energy storage. In this context, broadband dielectric spectroscopy (BDS) offers a powerful, non-destructive approach to investigate the electrical response and relaxation dynamics of polymers. These properties are investigated by parametrizing the system’s impedance response in terms of a network of circuit elements, i.e. the electrical equivalent circuit (EEC), whose impedance resembles the one of the system under investigation. However, the determination of the EEC from BDS data is challenging due to system complexity, interdependencies of circuit elements, and researcher biases. In this work, we propose a novel approach that incorporates a convolutional neural network (CNN) model to predict the EEC topology. By reducing user bias and enhancing data analysis, this approach aims to make BDS accessible to both experienced users and those with limited expertise. We show that the combination of machine learning and BDS provides valuable insights into the dynamic behaviour of polymer membranes, thus facilitating the design and characterization of tailored polymers for various applications. We also show that our model outperforms state-of-the-art machine learning methods with a top-5 accuracy of around 80% for predicting the circuit topology and a parameter fitting error as low as 0.05%.
MoreTranslated text
Key words
Polymer membranes,Electrochemical impedance spectroscopy,Broadband dielectric spectroscopy,Deep learning,Machine learning,Equivalent circuit
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
1994
被引用104 | 浏览
2008
被引用233 | 浏览
1993
被引用148 | 浏览
1992
被引用212 | 浏览
2001
被引用97 | 浏览
2014
被引用168 | 浏览
2012
被引用74 | 浏览
2019
被引用42 | 浏览
2019
被引用71 | 浏览
2020
被引用710 | 浏览
2022
被引用3 | 浏览
2023
被引用9 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper