Exploring Opportunities for Clinical Data Warehouse Enhancement Through Data Catalog Integration
Studies in health technology and informatics(2024)
Division for Digital Health and Telemedicine
Abstract
Secondary use of clinical health data implies a prior integration of mostly heterogenous and multidimensional data sets. A clinical data warehouse addresses the technological and organizational framework conditions required for this, by making any data available for analysis. However, users of a data warehouse often do not have a comprehensive overview of all available data and only know about their own data in their own systems - a situation which is also referred to as ‘data siloed state’. This problem can be addressed and ultimately solved by implementation of a data catalog. Its core function is a search engine, which allows for searching the metadata collected from different data sources and thereby accessing all data there is. With this in mind, we conducted an explorative online market survey followed by vendor comparison as a pre-requisite for system selection of a data catalog. Assessment of vendor performance was based on seven predetermined and weighted selection criteria. Although three vendors achieved the highest score, results were lying closely together. Detailed investigations and test installations are needed for further narrowing down the selection process.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined