Effect of Mortality Prediction Models on Resource Use Benchmarking of Intensive Care Units
JOURNAL OF CRITICAL CARE(2024)
Univ Bern
Abstract
PurposeIntensive care requires extensive resources. The ICUs' resource use can be compared using standardized resource use ratios (SRURs). We assessed the effect of mortality prediction models on the SRURs.Materials and methodsWe compared SRURs using different mortality prediction models: the recent Finnish Intensive Care Consortium (FICC) model and the SAPS-II model (n = 68,914 admissions). We allocated the resources to severity of illness strata using deciles of predicted mortality. In each risk and year stratum, we calculated the expected resource use per survivor from our modelling approaches using length of ICU stay and Therapeutic Intervention Scoring System (TISS) points.ResultsResource use per survivor increased from one length of stay (LOS) day and around 50 TISS points in the first decile to 10 LOS-days and 450 TISS in the tenth decile for both risk scoring systems. The FICC model predicted mortality risk accurately whereas the SAPS-II grossly overestimated the risk of death. Despite this, SRURs were practically identical and consistent.ConclusionsSRURs provide a robust tool for benchmarking resource use within and between ICUs. SRURs can be used for benchmarking even if recently calibrated risk scores for the specific population are not available.
MoreTranslated text
Key words
Cost control,Health care benchmarking,Health resources,Hospital mortality,Intensive care unit,Resource allocation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined