WeChat Mini Program
Old Version Features

Implementation of a Machine Learning Model in Acute Coronary Syndrome and Stroke Risk Assessment for Patients with Lower Urinary Tract Symptoms

TAIWANESE JOURNAL OF OBSTETRICS & GYNECOLOGY(2024)

Chi Mei Med Ctr

Cited 0|Views3
Abstract
OBJECTIVE:The global population is aging and the burden of lower urinary tract symptoms (LUTS) is expected to increase. According to the National Health Insurance Research Database, our previous studies have showed LUTS may predispose patients to cardiovascular disease. However, it is difficult to provide a personalized risk assessment in the context of "having acute coronary syndrome (ACS) and stroke." This study aimed to develop an artificial intelligence (AI)-based prediction model for patients with LUTS. MATERIAL AND METHODS:We retrospectively reviewed the electronic medical records of 1799 patients with LUTS at Chi Mei Medical Center between January 1, 2001 and December, 31, 2018. Features with >10 cases and high correlations with outcomes were imported into six machine learning algorithms. The study outcomes included ACS and stroke. Model performances was evaluated using the area under the receiver operating characteristic curve (AUC). The model with the highest AUC was used to implement the clinical risk prediction application. RESULTS:Age, systemic blood pressure, diastolic blood pressure, creatinine, glycated hemoglobin, hypertension, diabetes mellitus and hyperlipidemia were the most relevant features that affect the outcomes. Based on the AUC, our optimal model was built using multilayer perception (AUC = 0.803) to predict ACS and stroke events within 3 years. CONCLUSION:We successfully built an AI-based prediction system that can be used as a prediction model to achieve time-saving, precise, personalized risk evaluation; it can also be used to offer warning, enhance patient adherence, early intervention and better health care outcomes.
More
Translated text
Key words
Lower urinary tract symptoms,Artificial intelligence,Prediction model,Acute coronary syndrome,Stroke
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined