WeChat Mini Program
Old Version Features

Shaded Fraction and Backtracking in Single-Axis Trackers on Rolling Terrain

Journal of Renewable and Sustainable Energy(2024)SCI 4区

Sandia Natl Labs

Cited 0|Views9
Abstract
A generalized closed-form equation for the shaded collector fraction in solar arrays on rolling or undulating terrain is provided for single-axis tracking and fixed-tilt systems. The equation accounts for different rotation angles between the shaded and shading trackers, cross-axis slope between the two trackers, and offset between the collector plane and axis of rotation. The validity of the equation is demonstrated through comparison with numerical ray-tracing simulations and remaining minor sources of error are quantified. Additionally, a simple procedure to determine backtracking rotations for each row in an array installed on the rolling terrain (varying in the direction perpendicular to the tracker axes) is provided. The backtracking equation accounts for a desired shaded fraction (including complete shade avoidance) as well as an axis-collector offset. Test cases are provided to facilitate implementation of these equations.
More
Translated text
Key words
Solar Thermal Collectors
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
W. F. Marion, A. P. Dobos
2013

被引用32 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined