WeChat Mini Program
Old Version Features

IGF2BP2-related Modification Patterns in Pancreatic Cancer: A Machine Learning-Driven Approach Towards Personalized Treatment

Heliyon(2024)

Cent South Univ

Cited 0|Views15
Abstract
Pancreatic cancer (PC) is a malignant digestive system tumor with a very poor prognosis. N6-methyladenosine (m6A) is mediated by a variety of readers and participates in important regulatory roles in PC. Based on TCGA_PAAD, ICGC_AU_PAAD, ICGC_CA_PAAD, GSE28735 and GSE62452 datasets, We mapped the multi-omics changes of m6A readers in PC and found that m6A readers, especially IGF2BP family genes, had specific changes and were significantly associated with poor prognosis. An unsupervised consensus clustering algorithm was used to explore the correlation between specific expression patterns of m6A readers in PC and enrichment pathways, tumor immunity and clinical molecular subtypes. Then, the principal component analysis (PCA) algorithm was used to quantify specific expression patterns and screen core genes. Machine learning algorithms such as Bootstrapping and RSF were used to quantify the expression patterns of core genes and construct a prognostic scoring model for PC patients. What's more, pharmacogenomic databases were used to screen sensitive drug targets and small molecule compounds for high-risk PC patients in an all-around and multi-angle way. Our study has not only provided new insights into personalized prognostication approaches, but also thrown light on integrating tailored risk stratification with precision therapy based on IGF2BP2-mediated m6A modification patterns.
More
Translated text
Key words
IGF2BP2,m6A modification,Precision medicine,Pancreatic cancer
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined