WeChat Mini Program
Old Version Features

Near-real-time 3D Reconstruction of the Solar Coronal Parameters Based on the Magnetohydrodynamic Algorithm Outside a Sphere Using Deep Learning

The Astrophysical Journal Supplement Series(2024)

Kyung Hee Univ

Cited 2|Views10
Abstract
For the first time, we generate solar coronal parameters (density, magnetic field, radial velocity, and temperature) on a near-real-time basis by deep learning. For this, we apply the Pix2PixCC deep-learning model to three-dimensional (3D) distributions of these parameters: synoptic maps of the photospheric magnetic field as an input and the magnetohydrodynamic algorithm outside a sphere (MAS) results as an output. To generate the 3D structure of the solar coronal parameters from 1 to 30 solar radii, we train and evaluate 152 distinct deep-learning models. For each parameter, we consider the data of 169 Carrington rotations from 2010 June to 2023 February: 132 for training and 37 for testing. The key findings of our study are as follows: First, our deep-learning models successfully reconstruct the 3D distributions of coronal parameters from 1 to 30 solar radii with an average correlation coefficient of 0.98. Second, during the solar active and quiet periods, the AI-generated data exhibits consistency with the target MAS simulation data. Third, our deep-learning models for each parameter took a remarkably short time (about 16 s for each parameter) to generate the results with an NVIDIA Titan XP GPU. As the MAS simulation is a regularization model, we may significantly reduce the simulation time by using our results as an initial configuration to obtain an equilibrium condition. We hope that the generated 3D solar coronal parameters can be used for the near-real-time forecasting of heliospheric propagation of solar eruptions.
More
Translated text
Key words
Active solar corona,Astronomy data analysis,Astronomy image processing,The Sun
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined