Bridging the Gap Between Surface Physics and Photonics.
Reports on Progress in Physics(2024)
Univ Turku
Abstract
Use and performance criteria of photonic devices increase in various application areas such as information and communication, lighting, and photovoltaics. In many current and future photonic devices, surfaces of a semiconductor crystal are a weak part causing significant photo-electric losses and malfunctions in applications. These surface challenges, many of which arise from material defects at semiconductor surfaces, include signal attenuation in waveguides, light absorption in light emitting diodes, non-radiative recombination of carriers in solar cells, leakage (dark) current of photodiodes, and light reflection at solar cell interfaces for instance. To reduce harmful surface effects, the optical and electrical passivation of devices has been developed for several decades, especially with the methods of semiconductor technology. Because atomic scale control and knowledge of surface-related phenomena have become relevant to increase the performance of different devices, it might be useful to enhance the bridging of surface physics to photonics. Toward that target, we review some evolving research subjects with open questions and possible solutions, which hopefully provide example connecting points between photonic device passivation and surface physics. One question is related to the properties of the wet chemically cleaned semiconductor surfaces which are typically utilized in device manufacturing processes, but which appear to be different from crystalline surfaces studied in ultrahigh vacuum by physicists. In devices, a defective semiconductor surface often lies at an embedded interface formed by a thin metal or insulator film grown on the semiconductor crystal, which makes the measurements of its atomic and electronic structures difficult. To understand these interface properties, it is essential to combine quantum mechanical simulation methods. This review also covers metal-semiconductor interfaces which are included in most photonic devices to transmit electric carriers to the semiconductor structure. Low-resistive and passivated contacts with an ultrathin tunneling barrier are an emergent solution to control electrical losses in photonic devices.
MoreTranslated text
Key words
carrier recombination,antireflection coating,interface defect,atomic and electronic structure,wet chemical treatment,surface oxidation,metal contact
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined