WAVELET-BASED AUTOMATIC PECTORAL MUSCLE SEGMENTATION FOR MAMMOGRAMS
medrxiv(2024)
Abstract
The computational analysis to assist radiologists in the interpretation of mammograms usually requires a pre-processing step where the image is converted into a black and white mask to separate breast tissue from the pectoral muscle and the image background. The manual delineation of the breast tissue from the mammogram image is subjective and time-consuming. The 2D Wavelet Transform Modulus Maxima (WTMM) segmentation method, a powerful and versatile multi-scale edge detection approach, is adapted and presented as a novel automated breast tissue segmentation method. The algorithm computes the local maxima of the modulus of the continuous Gaussian wavelet transform to produce candidate edge detection lines called maxima chains. These maxima chains from multiple wavelet scales are optimally sorted to produce a breast tissue segmentation mask. The mammographic mask is quantitatively compared to a manual delineation using the Dice-Sorenson Coefficient (DSC). The adaptation of the 2D WTMM segmentation method produces a median DSC of 0.9763 on 1042 mediolateral oblique (MLO) 2D Full Field Digital mammographic views from 82 patients obtained from the MaineHealth Biobank (Scarborough, Maine, USA). Our proposed approach is evaluated against OpenBreast , an open-source automated analysis software in MATLAB, through comparing each approach's masks to the manual delineations. OpenBreast produces a lower median DSC of 0.9710. To determine statistical significance, the analysis is restricted to 82 mammograms (one randomly chosen per patient), which yields DSC medians of 0.9756 for the WTMM approach vs. 0.9698 for OpenBreast ( p -value = 0.0067 using a paired Wilcoxon Rank Sum test). Thus, the 2D WTMM segmentation method can reliably delineate the pectoral muscle and produce an accurate segmentation of whole breast tissue in mammograms.
MoreTranslated text
Key words
Digital Mammography,Mammographic Density,Contrast-enhanced Mammography,Medical Image Analysis,Medical Imaging
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined