Software Compensation for Highly Granular Calorimeters Using Machine Learning
S. Lai, J. Utehs, A. Wilhahn,O. Bach,E. Brianne,A. Ebrahimi,K. Gadow,P. Goettlicher,O. Hartbrich,D. Heuchel,A. Irles,K. Krueger,J. Kvasnicka,S. Lu,C. Neubueser,A. Provenza,M. Reinecke,F. Sefkow,S. Schuwalow,M. De Silva,Y. Sudo,H. L. Tran,E. Buhmann,E. Garutti,S. Huck,G. Kasieczka,S. Martens,J. Rolph,J. Wellhausen,G. C. Blazey,A. Dyshkant,K. Francis,V Zutshi,B. Bilki,D. Northacker,Y. Onel,F. Hummer,F. Simon,K. Kawagoe, T. Onoe,T. Suehara,S. Tsumura,T. Yoshioka,M. C. Fouz,L. Emberger,C. Graf, M. Wagner,R. Poschl,F. Richard,D. Zerwas,V Boudry,J-C Brient,J. Nanni,H. Videau,L. Liu,R. Masuda, T. Murata,W. Ootani, T. Takatsu,N. Tsuji,M. Chadeeva,M. Danilov,S. Korpachev,V Rusinov JOURNAL OF INSTRUMENTATION(2024)
Key words
Large detector-systems performance,Pattern recognition,cluster finding,calibration and fitting methods,Performance of High Energy Physics Detectors
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper