KARR-seq Reveals Cellular Higher-Order RNA Structures and RNA–RNA Interactions
Nature Biotechnology(2024)
Department of Chemistry
Abstract
RNA fate and function are affected by their structures and interactomes. However, how RNA and RNA-binding proteins (RBPs) assemble into higher-order structures and how RNA molecules may interact with each other to facilitate functions remain largely unknown. Here we present KARR-seq, which uses N 3 -kethoxal labeling and multifunctional chemical crosslinkers to covalently trap and determine RNA–RNA interactions and higher-order RNA structures inside cells, independent of local protein binding to RNA. KARR-seq depicts higher-order RNA structure and detects widespread intermolecular RNA–RNA interactions with high sensitivity and accuracy. Using KARR-seq, we show that translation represses mRNA compaction under native and stress conditions. We determined the higher-order RNA structures of respiratory syncytial virus (RSV) and vesicular stomatitis virus (VSV) and identified RNA–RNA interactions between the viruses and the host RNAs that potentially regulate viral replication.
MoreTranslated text
Key words
RNA Structure,RNA methylation,RNA Phase Transitions,tRNA
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined