Motion Artifact Correction in Cardiac CT Using Cross-Phase Temporospatial Information and Synergistic Attention Gate and Spatial Transformer Sub-Networks
Physics in medicine and biology(2024)
Dept Radiol
Abstract
Objectives. To improve quality of coronary CT angiography (CCTA) images using a generalizable motion-correction algorithm. Approach. A neural network with attention gate and spatial transformer (ATOM) was developed to correct coronary motion. Phantom and patient CCTA images (39 males, 32 females, age range 19-92, scan date 02/2020 to 10/2021) retrospectively collected from dual-source CT were used to create training, development, and testing sets corresponding to 140- and 75 ms temporal resolution, with 75 ms images as labels. To test generalizability, ATOM was deployed for locally adaptive motion-correction in both 140- and 75 ms patient images. Objective metrics were used to assess motion-corrupted and corrected phantom and patient images, including structural-similarity-index (SSIM), dice-similarity-coefficient (DSC), peak-signal-noise-ratio (PSNR), and normalized root-mean-square-error (NRMSE). In objective quality assessment, ATOM was compared with several baseline networks, including U-net, U-net plus attention gate, U-net plus spatial transformer, VDSR, and ResNet. Two cardiac radiologists independently interpreted motion-corrupted and -corrected images at 75 and 140 ms in a blinded fashion and ranked diagnostic image quality (worst to best: 1-4, no ties). Main results. ATOM improved quality metrics (p < 0.05) before/after correction: in phantom, SSIM 0.87/0.95, DSC 0.85/0.93, PSNR 19.4/22.5, NRMSE 0.38/0.27; in patient images, SSIM 0.82/0.88, DSC 0.88/0.90, PSNR 30.0/32.0, NRMSE 0.16/0.12. ATOM provided more consistent improvement of objective image quality, compared to the presented baseline networks. The motion-corrected images received better ranks than un-corrected at the same temporal resolution (p < 0.05): 140 ms images 1.65/2.25, and 75 ms images 3.1/3.2. The motion-corrected 75 ms images received the best rank in 65% of testing cases. A fair-to-good inter-reader agreement was observed (Kappa score 0.58). Significance. ATOM reduces motion artifacts, improving visualization of coronary arteries. This algorithm can be used to virtually improve temporal resolution in both single- and dual-source CT.
MoreTranslated text
Key words
computed tomography angiography,coronary artery,motion artifact correction,deep learning,attention,spatial transformer
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined